지식정보

힉스 입자 vs. 힉스 메커니즘

narrae 2013. 6. 10. 02:53

 

[펌] 힉스 입자와 힉스 메커니즘| 지구, 과학, 우주
빛이되어 | 조회 419 |추천 1 | 2013.03.15. 15:16


힉스 입자 vs. 힉스 메커니즘 

도대체 힉스 입자가 뭐기에 이렇게 세상이 떠들썩한 걸까. 신문이나 방송을 보면 ‘힉스 입자가 다른 모든 입자들의 질량을 준다’고 하는데, 이 말은 또 무슨 뜻일까. 무엇보다 이 입자를 발견한다는 건 왜, 얼마나 중요한 걸까.

질량 주는 건 ‘힉스 입자’ 아닌 ‘힉스 메커니즘’

먼저 중요한 오해를 하나 해결하고 넘어가자. 어쩌면 이 글에서 가장 중요한 지적이다. 언론에는 “힉스 입자가 다른 입자에 질량을 준다”는 말이 많이 나왔다. 심지어 입자물리학자들도 이렇게 말한다. 하지만 엄밀하게 말하면 틀린 말이다. 다른 입자들에게 질량을 주는 현상은 ‘힉스 메커니즘’이다. 이는 힉스 입자와는 분리해 사용해야 하는 용어다. 힉스라는 사람 이름(피터 힉스)이 공통으로 들어가 있기 때문에 혼동하고 있을 뿐이다. 차차 자세하게 얘기하겠지만 힉스는 모든 입자에 질량을 주는 과정(힉스 메커니즘)에서 함께 생겨나는 입자다.

그러면 우선 힉스 메커니즘에 대해 알아보자. 지난 2세기 동안 원자, 원자핵, 전자, 핵반응 등 입자물리 연구결과를 빠짐없이 잘 설명하고 있는 ‘표준모형’이라는 이론이 있다. 이 모형은 글래쇼, 살람, 와인버그가 완성해 1979년 노벨상을 수상했다. 이 이론의 기본적인 틀은 ‘ 게이지 대칭성 ’이라는 성질이다.

이 성질을 쉽게 설명하면 우주에 존재하는 힘이 사실은 입자를 주고받으며 생긴다는 것이다. 즉 전자기적인 상호작용(전자기력)은 광자라는 입자를 교환하며 발생하는 것이고, 약한 상호작용은 W입자와 Z입자를, 강한 상호작용은 글루온이라고 부르는 입자를 교환하며 생긴다. 여기서 광자, W입자, Z입자, 글루온이 다 게이지 입자 다. 힘이 입자라니 당혹스러울 수도 있겠지만 대부분의 입자물리학자들이 사실로 받아들이고 있다.

그런데 문제가 있다. 게이지 대칭성이 있으면 전자나 쿼크, W입자, Z입자 등 모든 입자들이 질량을 가질 수 없다는 점이다. 하지만 실제로는 광자와 글루온을 제외하면 모든 입자가 질량을 가지고 있다. 도대체 어떻게 이런 모순을 해결할 수 있을까.



질량 메커니즘 1  
자발적으로 깨지는 대칭성

이 문제를 풀 실마리는 우리 주변에서 쉽게 볼 수 있는 자석 안에 있었다. 자석은 철, 니켈, 크롬과 같이 전이금속이라고 불리는 원소들로 이뤄져 있다. 자석을 이루는 원자의 가장 바깥쪽에는 전자가 한 개 있다. 자석 전체의 에너지가 가장 낮아지면 이 전자가 가지고 있는 스핀 이 모두 한 방향을 가리킨다. 이때가 바로 자석이 되는 순간이다.

자석이 되기 전에는 전자의 스핀이 제각각 다른 곳을 가리키기 때문에 전체적으로는 일정한 방향이 없다. 그래서 이 물질을 회전시켜도 스핀의 방향은 여전히 일정한 방향이 없는 상태 그대로다. 그러나 자석은 스핀이 한 방향으로 정렬돼 있다. 만일 회전시키면 방향이 달라진다. 즉 대칭이 깨지는 것이다. 이렇게 에너지가 가장 낮을 때 대칭성이 사라지는 상황을 물리학자들은 “대칭성이 자발적으로 깨졌다”고 말한다(120쪽 그림 1).

앞에서 게이지 대칭성이 있으면 질량을 가질 수 없다고 말했다. 그런데 대칭성이 자발적으로 깨지면 표준모형에서도 입자가 질량을 가질 수 있게 된다. 현실과 이론 사이의 불일치를 해결할 가능성이 생긴 셈이다.



질량 메커니즘 2 
 다른 입자와 상호작용하는 입자

하지만, 여전히 ‘어떻게’ 질량을 가질 수 있을지는 해결되지 않았다. 이제 입자가 질량을 가지는 과정을 살펴보자.

자신이 표준모형을 처음 만든 사람이라고 가정하고 새로운 모형을 만들어 본다고 생각해 보자. 우선 앞서 든 예에서 ‘자석의 스핀’ 역할을 하는 입자 네 개를 도입한다. 왜 하필 네 개냐 하면, 여러 상호작용을 가능하게 하면서 가장 적게 도입할 수 있는 입자 수기 때문이다.

다음으로 이 입자들이 다른 입자와도 상호작용을 할 수 있다고 해보자. 다른 이유는 없고, 그렇지 않다고 가정하는 게 오히려 특별하기 때문이다. 다시 말해 입자는 다른 입자와 상호작용을 하는 게 더 자연스럽다.

이제 가장 낮은 에너지 상태에서 이 입자 중 하나가 자석의 스핀처럼 한 방향의 값을 갖도록 해보자. 비유를 계속해 보면, 이 입자는 자석과 같은 역할을 한다. 이 자석 입자에는 다른 입자들이 달라붙는데, 세게 달라붙는 입자일수록 질량이 크다. 자석에 작은 쇠구슬과 큰 쇠구슬을 붙인다면 큰 쇠구슬이 작은 쇠구슬보다 더 세게 달라붙어 떼어내기 힘들 것이다. 전자와 쿼크 등 물질세계를 이루는 입자 대부분은 이러한 과정에서(자석에 달라붙는 과정) 질량을 얻는다(자석은 어디까지나 비유임에 유의하자. 실제로 입자가 힉스입자에 달라붙는 것은 아니다).





질량 메커니즘 3  다른 방향으로 진동하는 입자

마지막으로 힘을 매개하는 W입자와 Z입자가 질량을 갖는 과정을 살펴보자. 기타 줄을 세게 매고 튕겨 보자. 기타 줄의 주위로 진동이 생길 것이다. 입자물리학에서는 원래 매어두었던 기타줄의 길이 방향을 앞에서 예를 든 스핀의 방향으로, 그 주위의 진동을 입자로 생각한다.

이렇게 한 방향(스핀)을 정하고도 계속 남은 네 개의 입자(기타 줄의 진동 포함) 중 세 개를 W+, W-입자와 Z입자로 흡수시킨다. 광자와 같이 질량이 없는 입자는 진행방향에 수직인 두 방향으로만 진동할 수 있다. 그런데 입자가 질량이 있으려면 편광방향(진동방향)이 한 개 더 있어야 한다. 새로 도입한 입자 중 세 입자를 다른 입자(질량을 갖기 전 W, Z 입자)에 흡수시키면 필요한 편광방향을 한 개씩 더 주는 효과가 있다. 이로써 W입자와 Z입자는 질량을 갖게 된다(위 그림 3).

정리하면, 새로운 입자 네 개를 도입한다. 이 중 한 입자는 낮은 에너지 상태에서 자발적으로 대칭성이 깨진 뒤 자석과 같이 하나의 스핀 방향을 향하게 하고, 이를 통해 전자나 쿼크에 질량을 준다. 나머지 세 입자는 W+, W-, Z 입자가 흡수한다. 이로써 자연계에 존재하는 모든 입자가 질량을 가질 수 있게 됐다. 이 복잡한 과정이 바로 힉스 메커니즘이다.

지금까지 힉스 ‘입자’에 대한 설명은 하나도 없었다. 힉스 입자는 무엇일까. 앞에서 네 개의 입자를 새로 도입했다. 그 중 세 개는 W입자와 Z입자의 일부분이 됐고, 하나가 남았는데 이것은 어디에도 흡수시킬 수 없는 독립적인 입자다. 이것은 대칭성이 깨지며 쿼크와 경입자에 질량을 주는 자석을 만든 후에 그 주위로 진동하는 입자다. 이 입자가 바로 힉스 입자다. 따라서 “힉스 입자가 다른 모든 입자에 질량을 준다”는 것은 잘못된 표현이다. 다만 질량을 주는 과정에서 힉스 입자가 생겨나고 힉스 입자를 통해 질량의 세계를 엿볼 수 있는 것은 맞다.





[CMS 연구팀이 한 자리에 모여서 기념 찰영을 했다. 우리나라를 포함해 41개국 4065명의 과학자와 기술자가 연구에 참여했다.]

“이것이 힉스 입자다”

힉스 입자는 스핀이 없는 ‘스칼라 입자’이며, 전하도 없다. 놀랍게도 입자 중에 스칼라 입자는 힉스 입자밖에 없다. 전자나 쿼크는 스핀이 1/2이고, 광자나 W입자, Z입자는 스핀이 1이다. 힉스 입자는 다른 모든 입자와 상호작용을 한다. 그런데 그 세기는 입자의 질량에 비례한다. 즉 질량이 큰 입자와 가장 상호작용을 세게 한다.

하지만 힉스 입자의 질량은 얼마인지 예상하기 어렵다. 그래서 찾기 어려웠다. 이 질량이 양성자 정도인지, 양성자 질량의 1/100인지, 100배인지 1000배인지 전혀 알 길이 없었다. 술래잡기를 해도 숨은 사람이 어디 숨었는지 대략 짐작할 수 있어야 찾기 쉽다. 숨은 사람이 집에 갔다면 도저히 찾을 수 없다. 그래서 지금까지 힉스 입자를 찾기가 어려웠다.

숨바꼭질을 할 때를 생각해 보자. 찾기 어려우면 발자국이나 주변 환경이 변한 모습 등 여러 흔적을 찾으려고 애쓴다. 물리학자들도 똑같다. 그래서 흔적, 즉 힉스 입자가 기여하는 물리적 과정을 찾았다.

그 것은 B중간자(쿼크와 반쿼크로 이뤄진 입자. 전자 등 가벼운 입자와 양성자 등 무거운 입자 사이의 질량을 가짐)가 붕괴하는 과정이다. 이 과정은 다른 가속기들에서 자세하게 측정됐고, 복잡한 이론 계산과 비교할 수 있다. 힉스 입자가 있다면, 힉스 입자 자체가 직접 나타나지는 않아도 B중간자가 붕괴할 때 잠깐 나타났다가 사라지는 효과를 계산할 수는 있다. 이를 바탕으로 계산해 보면 질량이 양성자보다 약 100배 정도는 커야 한다.

입자는 질량이 크면 여러 입자로 붕괴한다. 붕괴할 때 나타나는 입자가 여러 개면 분석하기 어렵다. 그래서 힉스 입자에서 붕괴했다고 확신할 수 있는 분명한 과정을 찾기 시작했다. 그 중 하나가 힉스 입자가 두 개의 광자로 붕괴하는 과정이다. 두 개의 광자를 측정하면, 이 광자들이 어느 질량을 가진 입자에서 붕괴했는지 알 수 있다. 물론 다른 과정에서 우연히 광자가 두 개 나타났을 수도 있다. 하지만 우연히 나타나는 것은 어느 에너지에서나 거의 일정하게 나타나지만, 한 입자에서 붕괴했을 때는 특정한 에너지에서 많이 나타난다. 그 신호를 이번에 찾은 것이다.

그런데 두 개의 광자로 붕괴하는 과정은 매우 깨끗하지만, 이 과정에 참여하는 전자기적 상호작용은 매우 약하다. 따라서 이 신호는 매우 많은, 다른 상관없는 신호들에 묻혀버린다. 상관없는 신호들이 힉스 입자가 붕괴하는 신호보다 20~30배는 크다. 그래서 짚단 속에서 바늘 찾기와 같은 작업을 할 수밖에 없었다. 즉 매우 많은 실험결과가 필요했다. LHC는 드디어 꽤 많은 실험결과를 갖게 됐고, 이를 근거로 힉스 입자를 발견했다고 발표했다.

그렇다면 이것이 정말 찾으려고 노력했던 힉스 입자일까. 혹시 모르고 있던 전혀 다른 입자가 숨어 있다가 나타난 것은 아닐까. 그 답을 알려면 이번에 발견한 입자의 다른 특징을 연구해야 한다. 그래서 7월에 발표할 때는 어디서도 힉스 입자를 발견했다는 말은 없고, 새로운 입자를 발견했다고만 했다. 실험물리학자들의 신중함을 존중하지만, 우리는 힉스 입자를 발견했다고 믿어도 되겠다.


그림 확대보기 ==> http://blog.naver.com/storyphoto/viewer.html?src=http%3A%2F%2Fscience.dongascience.com%2Fupload%2FarticleEditor%2F2012%2F07%2F85835545950165de1d7784.JPG


힉스 입자, 그 후

그래서 세상에 변한 것이 무엇인가. 사람들이 살아가는데 바뀐 것이 무엇인가. 이것을 발견하면 부자가 될 수 있는가. 힉스 입자가 발견됐다고 하늘이 연두색이 되는 것도 아니고, 인류의 기근이 해결되는 것은 아니다.

필자의 대답은 이렇다. 우리는 물리학을 통해 인류의 지적 능력의 한계가 어디인지 탐구한다. 힉스 입자를 발견하면서 지적 능력의 정수인 표준모형이 완성됐다. 이제 인류의 지적 능력은 우주가 어떻게 만들어지고, 그 안에 입자들은 어떻게 상호작용하여 별이 만들어지고, 인류가 생겨났다는 것을 설명할 수 있게 됐다. 마치 우사인 볼트 덕분에 인간이 100m를 10초 안에 뛸 수 있다는 육체적 능력의 끝을 볼 수 있었던 것처럼 말이다. 힉스 입자를 발견한 것은, 인간의 지적 능력의 산물인 표준모형의 눈동자에 점을 찍어준 것과 같다. 세상이 바뀌었는가. 그렇다. 우리가 세상을 보는 눈이 달라졌다.



 
저작자 표시컨텐츠변경비영리

 
묵인된침묵 13.03.15. 19:25
우앙....읽어도 모르겠네요...ㅠㅠ
 
 
백면서생 13.03.15. 23:41
역시 물리학은 천재들의 학문입니다. 무슨 이야긴지 모르겠습니다. 제가 알기론 우주 초창기에 대폭발, 빅뱅이 일어났는데 대폭발의 결과로 입자, 즉 물질의 근원이 생겨났을 것이다....그런데 왜 어떤 곳에서는 입자가 만들어지고 어떤 곳에서는 그냥 진공이냐? 대폭발의 에너지가 어떤 에너지장을 통과하면서 물질의 근원, 입자가 만들어졌다....라는 가설을 힉스라는 사람이 발표를 했고.....대폭발 에너지가 가상의 에너지장을 통과해 만들어진 것이 힉스입자이고 이것이 뭉치고 뭉쳐서 물질이 되얐다....하는 것이 힉스의 이론인 것으로 알고 있슴다.
 
빛이되어 13.03.16. 00:15
이미 2500년 전에 석가모니(인도가 아닌 네팔 태생의 동양인)는 깊은 명상을 통해서 깨달은 우주 만물의 근원과 소립자의 세계를 '십바라밀도'를 통해서 잘 보여주고 있습니다. 안타깝게도 요즘 스님들은 제대로 해석을 못하고 있습니다.

불교에서 말하는 '색즉시공 공즉시색' 그리고 우리 선조들의 삼태극 사상은 이미 수천년 전 부터 양자물리학의 세계와 소립자들의 오묘한 성질을 정확히 설명하고 있습니다. 참으로 놀라운 사실이죠.
서양은 양자물리학을 통해서 이제서야 겨우 우주의 실체에 대해 눈을 뜨고 걸음마를 하기 시작했구요. 결코 천재들이 아닙니다. 아주 어렵고 복잡하게 접근해 가고 있을 뿐이죠.
 
 
펄사의씨앗 13.03.16. 11:26
힉스의 입자가 무엇인지 쉽게 설명하자면 가령 명동거리에 수많은 사람들이 보행을 하고잇지만 어느 누구하나 서로 부딪치지않습니다.질서라는 우주의 법칙속에서 서로들의 길을 가고있습니다.그런데 문득 스타 원빈<새로운질량>이가 나타났다고 한다면 모든 사람들은 그곳으로 모이겟죠? 이것이 바로 힉스원리입니다.전체에게 영향을 주는 새로운 질량의 등장으로 사람들은 한곳으로 모일때 새로운 법칙이 적응되겠죠? 그 새로움이 바로 새로운 별의 탄생을 의미하는겁니다.힉스는 빛이되어님이 말씀하신것과같이 색즉시공 공즉시색처럼 있음으로 존재하고 없음으로도 존재하는 "공"의 입자입니다. 금강경을 공부하다가 생각나는것이 잇어서
 
 
펄사의씨앗 13.03.16. 11:31
글을 적어봅니다.

"진리라는것도 깨달음이라는것도 "나"라는것이 스며들때 다 허상이되리니..진리도 버리고 깨달음도 버려야하느니라"
"나" 라는것을 버린다는것은 바로 외부적인 모든 형상<질량>을 버리는것이라고 생각합니다.외부적인 모든 요인을 버리고 내부적인 앎을 찾을때 그곳에 색즉시공 공즉시색의 향기가 우주속에서 메아리처럼 잔잔하게 깔려잇음을 알수있을것 같은데..그 전체로써의 앎을 질량을 찾는것이 우리들의 평생 숙제인것 같내요^^
 
빛이되어 13.03.16. 11:51
핵심적인 말씀이십니다. 감사합니다! ^^
 
 
이소원 13.03.17. 22:45
최준곤 교수의 주장이로군요.....

관련한 보다 세세한 내용의 자료, 고맙습니다 빛이되어 님.

힘내시고, 좋은 휴일 밤되십시요.
 
빛이되어 13.03.18. 01:18
저는 전공이 생물이라 양자물리학에 관한 전문적인 교육을 받아보지는 못했습니다. 인터넷 덕분에 여기 저기서 쉽게 풀어놓은 자료들을 보고 기본적인 이해정도만 하고 있습니다ㅎㅎ 우리 인류가 아나로그 시대에서 디지털 시대로 넘어 오면서 인터넷이 실로 어마어마한 혁명을 가져왔다고 생각합니다. 그런데 앞으로 양자물리학은 인터넷과는 비교도 안될 큰 혁명을 가져오리라 예상됩니다. 많은 분들이 기본적인 정보는 꼭 알고 계셨으면 하는 바램입니다^^
 
빛이되어 13.03.18. 01:17
한 가지 염려되는 것은 앞으로 다가올 이 '양자혁명'을 서양이 주도하게 된다면 또 다시 인류는 갈팡질팡 혼란의 연속이 될 거라 생각됩니다. 뿌리 깊은 우주철학에 바탕을 둔 동양사상이 주도해야만이 인류의 미래가 보장된다는 생각입니다. 지금까지의 약육강식에 의한 남을 착취하는 그런 역사가 아닌 모두가 조화롭게 되고 모두를 위하는 그런 역사를 써 나가게 되기를 바램합니다^^

 

 

 

양자의 상호작용 속도는 빛의 최소 1만 배| 지구, 과학, 우주
웅이 | 조회 265 |추천 1 | 2013.03.16. 13:31

2013/03/16 10:26

 

(서울=연합뉴스) 양자의 상호작용 속도가 빛보다 1만배 이상 빠르다는 사실이 실험을 통해 밝혀졌다고 라이브사이언스 닷컴이 15일 보도했다.

 

중국과 미국 과학자들은 `얽혀있는 광자(광양자)', 즉 물리적으로 분리돼 있을 때조차 `얽힘 상태'를 유지하는 광자들을 이용한 실험에서 이런 사실을 밝혀냈다고 물리학 논문 초고 등록 사이트 ArXiv.org에 발표했다.

 

양자 물리학자들은 광자 같은 두 개의 입자가 상호작용을 한 뒤 종종 얽힘 상태가 돼 물리적 쌍둥이처럼 된다는 사실을 오래 전부터 알고 있었다.

 

아인슈타인이 "불가사의한 원격 상호작용"이라고 부른 이런 현상은 많은 실험 대상이 됐고 보통은 얽힌 두 개의 양자를 각기 다른 장소로, 이를 테면 광자 A는 로스앤젤레스로, 광자 B는 보스턴으로 보내는 방식으로 이루어졌다.

 

광자 A를 관찰하면 특정한 극성을 띠지만 다른 광자는 반대의 극성을 띤다. 로스앤젤레스의 광자가 `위'이면 보스턴의 광자는 `아래'가 되는 식이다. 이런 극성은 측정하기 전에는 알 수 없지만 얽힌 광자들은 `즉시' 자기가 있어야 할 상태를 `아는' 것처럼 보인다.

 

연구진은 이 `즉시'의 의미를 알아내기 위해 얽힘상태에 있는 두 개의 광자를 16㎞ 떨어진 두 장소로 보낸 뒤 한 양자의 상태와 얽힘상태가 드러나는데 걸린 시간을 측정했다.

 

그 결과 양자 상호작용에 걸린 시간은 가장 느린 경우가 빛보다 1만 배 빠른 것으로 나타났다.

 

그러나 이런 실험 결과는 예상하지 못했던 것은 아니며 빛보다 빠른 메시지 전달이 가능함을 의미하는 것도 아니다. 왜냐하면 실제로 측정하기 전에는 얽혀있는 광자 쌍의 상태를 알 수 없기 때문이다.

 

따라서 광자들을 제어해 다른 쪽 광자가 특정 상태를 갖도록 만들어 모스부호처럼 사용할 수가 없는 것이다.

이런 종류의 실험은 지난 2008년 유럽 과학자들도 한 적이 있지만 연구진은 광자의 정확한 상태를 측정하는데 필요한 실제에 근접한 상수를 얻기 위해 같은 실험을 반복했다.

 

연구진은 광자의 상태가 바뀌는데 아무리 작은 시간이 걸리는 것으로 밝혀진다 해도 이런 시차가 양자 물리학에 어떤 의미를 갖게 될지는 분명치 않다고 밝혔다. 왜냐하면 양자현상을 해석하는데는 여러가지 방식이 있고 모두가 실험 결과를 똑같이 잘 설명하기 때문이다.

 

더구나 물리학자들은 이런 시차를 알아낼 수 있는 실험이 있는지조차 확신하지 못하고 있다.

연구진은 누군가가 양자 상호작용의 속도를 정확히 알아낸다는 것은 극도로 불가능하며 현대 물리학으로는 이런 종류의 발견이 원천적으로 막혀 있지만 한계를 밝혀내는 것도 의미있는 일일 것이라고 말했다.

 

http://www.yonhapnews.co.kr/international/2013/03/16/0619000000AKR20130316026400009.HTML